向量平行公式,向量平行公式和垂直公式口诀
向量平行公式?
1、对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a;
2、当向量a=(x1,y1),向量b=(x2,y2)时,当x1y2=x2y1时,向量a‖向量b,反之也成立。

“在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。…若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0”
平行向量:方向相同或相反的非零向量叫做平行(或共线)向量.向量a、b平行(共线),记作a∥b。零向量长度为零,是起点与终点重合的向量,其方向不确定。我们规定:零向量与任一向量平行。平行于同一直线的一组向量是共线向量。
若a=(x,y),b=(m,n),则a//b→a×b=xn-ym=0
共线定理:若b≠0,则a//b的充要条件是存在唯一实数λ,使向量a=λ向量b。若设a=(x1,y1),b=(x2,y2) ,则有 x1y2=x2y1 ,与平行概念相同。0向量平行于任何向量。
向量平行公式?
两个向量平行的公式为:a=λb(b不是零向量),向量是既有大小又有方向的量叫向量,平行向量也叫共线向量,是指方向相同或相反的非零向量,零向量与任意向量平行。
相等的向量一定平行,但是平行的向量并不一定相等,两个向量相等并不一定这两个向量一定要重合,只用这两个向量长度相等且方向相同即可,其中“方向相同”就包含着向量平行的含义。
向量平行公式的推导?
向量有两种表示:几何法和坐标法。而最先接触的是几何法,平行向量的方向相同同或相反,即:α=λβ.令α=(x1,y1)β=(x2,y2)则(x1,y1)=λ(x2,y2)所以x1=λx2,y1=λy2所以λ=x1/x2=y1/y2所以x1y2=x2y1